2 4 Ja n 20 05 Foliation - coupling Dirac structures by Izu Vaisman
نویسنده
چکیده
We extend the notion of " coupling with a foliation " from Poisson to Dirac structures and get the corresponding generalization of the Vorobiev characterization of coupling Poisson structures [20, 18]. We show that any Dirac structure is coupling with the fibers of a tubular neighborhood of an embedded presymplectic leaf, give new proofs of the results of Dufour and Wade [9] on the transversal Poisson structure, and compute the Vorobiev structure of the total space of a normal bundle of the leaf. Finally, we use the coupling condition along a submanifold, instead of a foliation, in order to discuss submanifolds of a Dirac manifold which have differentiable, induced Dirac structures. In particular, we get an invariant that reminds the second fundamental form of a submanifold of a Riemannian manifold.
منابع مشابه
Dirac Structures and Generalized Complex Structures on TM × R h by Izu Vaisman
We consider Courant and Courant-Jacobi brackets on the stable tangent bundle TM ×R of a differentiable manifold and corresponding Dirac, Dirac-Jacobi and generalized complex structures. We prove that Dirac and Dirac-Jacobi structures on TM × R can be prolonged to TM × R, k > h, by means of commuting infinitesimal automorphisms. Some of the stable, generalized, complex structures are a natural g...
متن کاملTangent Dirac structures and submanifolds by Izu Vaisman
We write down the local equations that characterize the sub-manifolds N of a Dirac manifold M which have a normal bundle that is either a coisotropic or an isotropic submanifold of T M endowed with the tangent Dirac structure. In the Poisson case, these formulas prove again a result of Xu: the submanifold N has a normal bundle which is a coisotropic submanifold of T M with the tangent Poisson s...
متن کاملJa n 19 99 A Survey on Nambu - Poisson Brackets by Izu Vaisman
The paper provides a survey of known results on geometric aspects related to Nambu-Poisson brackets.
متن کاملJ an 2 00 3 Kähler - Nijenhuis Manifolds by Izu Vaisman
A Kähler-Nijenhuis manifold is a Kähler manifold M , with metric g, complex structure J and Kähler form Ω, endowed with a Nijenhuis tensor field A that is compatible with the Poisson structure defined by Ω in the sense of the theory of Poisson-Nijenhuis structures. If this happens, and if AJ = ±JA, M is foliated by im A into non degenerate Kähler-Nijenhuis submanifolds. If A is a non degenerate...
متن کاملLagrange geometry on tangent manifolds by Izu Vaisman
Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a non degenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization, which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a fami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004