2 4 Ja n 20 05 Foliation - coupling Dirac structures by Izu Vaisman

نویسنده

  • Izu Vaisman
چکیده

We extend the notion of " coupling with a foliation " from Poisson to Dirac structures and get the corresponding generalization of the Vorobiev characterization of coupling Poisson structures [20, 18]. We show that any Dirac structure is coupling with the fibers of a tubular neighborhood of an embedded presymplectic leaf, give new proofs of the results of Dufour and Wade [9] on the transversal Poisson structure, and compute the Vorobiev structure of the total space of a normal bundle of the leaf. Finally, we use the coupling condition along a submanifold, instead of a foliation, in order to discuss submanifolds of a Dirac manifold which have differentiable, induced Dirac structures. In particular, we get an invariant that reminds the second fundamental form of a submanifold of a Riemannian manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac Structures and Generalized Complex Structures on TM × R h by Izu Vaisman

We consider Courant and Courant-Jacobi brackets on the stable tangent bundle TM ×R of a differentiable manifold and corresponding Dirac, Dirac-Jacobi and generalized complex structures. We prove that Dirac and Dirac-Jacobi structures on TM × R can be prolonged to TM × R, k > h, by means of commuting infinitesimal automorphisms. Some of the stable, generalized, complex structures are a natural g...

متن کامل

Tangent Dirac structures and submanifolds by Izu Vaisman

We write down the local equations that characterize the sub-manifolds N of a Dirac manifold M which have a normal bundle that is either a coisotropic or an isotropic submanifold of T M endowed with the tangent Dirac structure. In the Poisson case, these formulas prove again a result of Xu: the submanifold N has a normal bundle which is a coisotropic submanifold of T M with the tangent Poisson s...

متن کامل

Ja n 19 99 A Survey on Nambu - Poisson Brackets by Izu Vaisman

The paper provides a survey of known results on geometric aspects related to Nambu-Poisson brackets.

متن کامل

J an 2 00 3 Kähler - Nijenhuis Manifolds by Izu Vaisman

A Kähler-Nijenhuis manifold is a Kähler manifold M , with metric g, complex structure J and Kähler form Ω, endowed with a Nijenhuis tensor field A that is compatible with the Poisson structure defined by Ω in the sense of the theory of Poisson-Nijenhuis structures. If this happens, and if AJ = ±JA, M is foliated by im A into non degenerate Kähler-Nijenhuis submanifolds. If A is a non degenerate...

متن کامل

Lagrange geometry on tangent manifolds by Izu Vaisman

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a non degenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization, which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a fami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004